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knowledge of the crystal system and the nature and
directions of the symmetry axes. Thus, a transformation
matrix to a basis which is most convenient for the study
that is being carried out can always be obtained.

The lattice approach (FIG. 12) obtains a transforma-
tion matrix from a skewed cell to a standard cell by
analyzing the symmetry of the lattice. Each symmetry
matrix Hs is used directly to calculate the nature of the
symmetry axis and the direction of the axis with respect
to the lattice. After the proper three directions for the
standard cell edges have been chosen (step 1100) as
described hereinbelow, the task of obtaining a transfor-
mation matrix becomes a change-of-basis problem in
linear algebra. That is, a skewed basis is to be trans-
formed into a new standard basis. The first step (step
1200) in solving this change of basis problem is to as-
semble an augmented matrix of lattice symmetry direc-
tions, where the directions are written as columns. The
three symmetry directions chosen for the cell edges will
be the first three columns in the augmented matrix and
should be assembled with account taken of certain crys-
tallograhic conventions. These include the definition of
a right-handed coordinate system and observation of
the preferred order of the axes. As summarized below,
a transformation matrix from a skewed to a standard
cell is found by applying elementary row operations to
the augmented matrix until a new standard basis is ob-
‘tained (step 1300):

symmetry {100
";‘;’.“ directions {010 |—
1S | (optional) {001

symmetry
directions
(new basis)

transformation
matrix

[ new ]
basis

The new basis can be any 3X3 matrix. However,
when determining a transformation matrix to a conven-
tional unit cell, the new basis is usually the identity
matrix and the mathematical operation involved is sim-
ply the taking of the inverse of a 3 X 3 matrix by reduc-
ing an augmented matrix to row echelon form. The
choice of basis influences the relationships between the
remaining vectors as well as the interpretation of the
last three columns to give a transformation matrix. This
is especially true for centered lattices and for the rhom-
bohedral system. Although many variations are possible
owing to the many bases that can be chosen, the rela-
tionships between the vectors is well defined and, in
practice, the determination of a transformation matrix is
straightforward for all cases. The lattice approach may
be viewed as one form of lattice or celi reduction based
On symmetry.

Because the symmetry matrices are generated by
relating a cell to itself, the symmetry operations of the
lattice are obtained. However, symmetry is often de-
scribed in terms of equivalent positions for objects. This
is the basis used for the object approach (FIG. 13). As
explained hereinabove with respect to Laue symmetry,
the matrices Hs may be viewed as matrix representa-
tions of equivalent (h,k,1)’s. Therefore, in order to shift
the emphasis from lattices or intensities (h,k,I)’s to ob-
jects or (x,y,z)’s, the nature and directions of the sym-
metry axes are calculated (step 1000) from the trans-
poses of the inverses of the symmetry matrices, (Hs~1)!,
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and the three directions for the cell edges are chosen
(step 1100) as described hereinbelow. With this ap-
proach, the task of obtaining a transformation matrix is
greatly simplified because the standard basis is the iden-
tity matrix and the standard matrix for a matrix transfor-
mation is the matrix itself. This means that the transfor-
mation matrix from any skewed cell to a conventional
cell is obtained directly by making the three directions
chosen for the cell edges rows in a matrix (step 1400).
As in the case of the lattice approach, the transforma-
tion matrix should be assembled so that the crystallo-
graphic conventions are met. The type of centering
present is defined by a value for the determinant of the
transformation matrix, except in orthorhombic systems
where additional information is sometimes required.

Whether the lattice or the object approach is used to
determine a transformation matrix to a standard cell, an
important step is the selection of three linearly indepen-
dent vectors in the proper directions to be used as direc-
tions for the cell edges (step 1100). In the triclinic sys-
tem, selection of cell edges is based on metric condi-
tions. In the monoclinic system, the only symmetry
direction, a two-fold axis, is labelled as b (the vectors a
and c are chosen so that they lie in a plane perpendicu-
lar to b and meet additional metric constraints). The
directions of the three two-fold axes in the orthorhom-
bic system are selected for the cell edges. In the rhom-
bohedral system, the directions for any two of the three
two-fold axes and the direction of a three-fold axis are
used as directions for a, b, and c, respectively. The
resulting transformation may give either metrically
rhomohedral or metrically hexagonal axes depending
on the relationships between these vectors, i.e., the basis
chosen. In the tetragonal system, the directions for two
of five possible two-fold axes are taken as the a and b
axes while the direction of a four-fold axis is selected for
the c axis. Similarly, in the hexagonal system, directions
for two of the seven two-fold axes are selected for a and
b and the direction of a six-fold axis is selected for c.
The cell edges for the cubic system are taken along
three linearly independent four-fold axes. Thus, when
choosing three symmetry directions to be used as cell
edges, only the tetragonal and hexagonal crystal sys-
tems appear to allow more than one possibility.

The analysis-of-dependency-equations approach to
choosing the directions to be used as cell edges will now
be described with reference to FIG. 14. In the tetrago-
nal system, five of the matrices correspond to two-fold
axes. Since one of these five axes is parallel to a four-
fold axis, there are at most six combinations of two-fold
axes to be considered. Likewise, in the hexagonal sys-
tem, one of seven two-fold axes is parallel to a six-fold
axis, leading to at most fifteen ways to choose two of
the remaining six directions. ,

The first step (step 1110) in the dependency equation
procedure is to pick any two of the possible two-fold
axes and arbitrarily assign these as the directions for the
a and b axes. The direction used for the c axis is that of
a four-fold axis in the tetragonal system and a six-fold
axis for the hexagonal system. Next (step 1120), a matrix
is generated by making the symmetry directions col-
umns, with the first three columns representing the a, b,
and c directions. Using elementary row operations, the
matrix is then reduced (step 1130) to row echelon form.
This step gives the dependency equations for the re-
maining symmetry directions with respect to the basis
directions chosen.



